Subgroup meeting 2010.12.07

introduction of thermal transport

members: 王虹之, 盧孟珮
introduction of thermal transport

Phonon effect
- Lattice vibration
 - Debye model of lattice vibration
 - K space, Reciprocal lattice
 - Brillouin zone
 - Scattering mechanism
 - Boundary scattering
 - Phonon-phonon scattering
 - Normal Process
 - Umklapp process

Electron effect
- Debye temperature
- Bose-Einstein model
- Dulong-petit model
- The contribution of electron of heat capacity
- Heat capacity
Outline

• Dispersion relation (review)
• Specific heat (review)
• Different temperature ranges
• Low temperature range
• Debye temperature
- At lower energy (lower k)
- $K \alpha \ll \pi$ (near zero)
- The dispersion relation is regarded as linear

Dispersion relation

Electromagnetic wave
- $\omega/k = c$
- c: light speed
- c is constant \rightarrow linear dispersion relation
Dispersion relation

We get linear part of dispersion relation.
Group velocity \(v_g \) = 0 at \(k = \pi/a \)

Energy does not propagate in the medium (standing wave)
Dispersion relation

• Classical mechanism:
 Harmonic oscillator
 (conservative force and wave)

• We get dispersion relation by only classical assumption
There are three segments of the experiment curve of specific heat (Cv).
Specific heat

General form of specific heat

\[C_v = \frac{\partial}{\partial T} \frac{1}{TV} \sum_s \int \frac{\hbar \omega_s(k)}{e^{\hbar \omega_s(k)/k_B T} - 1} \frac{4\pi k^2 L^3}{(2\pi)^3} \, dk \]

Quatum theory of Harmonic solid

- Bose-Einstein distribution function
- Stationary states of vibration
Different approximations of temperature ranges:

- Low temperature: Debye model
- Intermediate temperature: Debye & Einstein
- High temperature: → Dulong-Petit
Specific heat at Low temperature

Debye model

- The angular frequencies are diverse values.
- The maximum allowed value is cut-off frequency ω_D
Debye model

Specific heat

\[C_v = \frac{1}{V} \frac{\partial}{\partial T} \int_0^{\omega_D} D(\omega) \frac{\hbar \omega}{e^{\hbar \omega/k_BT} - 1} \, d\omega \]

\[C_v = \frac{1}{V} 9nk_B \left(\frac{T}{\theta} \right)^3 \int_0^{\theta/T} x^4 e^x dx \frac{1}{(e^x - 1)^2} \]

where \(x = \frac{\hbar \omega}{k_BT} \)

- Density of states
- Energy per phonon
- Bose-Einstein distribution
- Cut-off frequency

\[U = 9nk_B T \left(\frac{T}{\theta} \right)^3 \int_0^{x_D} x^3 \frac{dx}{e^x - 1} \]
Debye model

The spacing between constant frequency surface depends on (group velocity) $d\omega/dk$

For simple case that $v_p=v_g$

$\omega/k=\text{constant}=\text{sound velocity}$

We can get approximation $D(\omega)$ of Debye model (low temperature)

$$D(\omega) = \frac{V \omega^2}{2\pi^2 v^3}$$
Specific heat at Low temperature

Dispersion relation

- Ignored optical branches
- Replace acoustic branch with liner branches

\[\omega = \frac{\hbar}{k_B T} \]
Specific heat at Low temperature

\[C_v = \frac{\partial}{\partial T} \frac{1}{V} \sum_s \int \frac{\hbar \omega_s(k)}{e^{\hbar \omega_s(k)/k_B T} - 1} \frac{4\pi k^2 L^3}{(2\pi)^3} \, dk \]

When \(T \) is small

High frequencies result in large \(e^{\hbar \omega/k_B T} \)

The contributions of high frequencies for LOW temperature are negligible.
Specific heat at Low temperature

\[C_v = \frac{\partial}{\partial T} \frac{1}{V} \sum_s \int \frac{\hbar \omega_s(k)}{e^{\hbar \omega_s(k)/k_B T} - 1} \frac{4\pi k^2 L^3}{(2\pi)^3} \, dk \]

\[C_v = \frac{\partial}{\partial T} \sum_s \int_0^\infty \frac{\hbar c_s(k) k^3}{e^{\hbar c_s(k) k / k_B T} - 1} \frac{dk}{2\pi^2} \]

\[\omega_s(k) = c_s(k) k \]

\[\frac{1}{c_{ave}^3} = \frac{1}{3} \sum_s \int \frac{d\Omega}{4\pi} \times \frac{1}{c_s(k)^3} \]

\[\sum_s = 3 \]

\[x = \frac{\hbar \omega}{k_B T} \]

\[\int_0^\infty \frac{x^3}{e^x - 1} \, dx = \frac{\pi^4}{15} \]
Specific heat at **Low temperature**

At very **low temperature**

Specific heat

\[C_v \approx \frac{2\pi^2}{5} \frac{k_B(T)^3}{(\hbar c_{ave})^3} \]

Which is **Debye** \(T^3 \) **law**

Condition assumption:
- Only Acoustic modes are thermally excited
- For actual crystals Temperature may necessary to be below \(T=\theta/50 \)

\[C_v \approx \frac{12\pi^4}{5} N k_B \left(\frac{T}{\theta} \right)^3 \]

\(\theta \) : Debye temperature
Debye temperature

Determine a cut-off frequency of specimen

\[N = \left(\frac{L}{2\pi} \right)^3 \frac{4\pi k^3}{3} = \frac{V}{6\pi^2} (\omega v)^3 \]

\[\omega_D^3 = 6\pi^2 v^3 N/V \]

\[K_D = \left(\frac{6\pi^2 N}{V} \right)^{\frac{1}{3}} \]

\[C_V = \frac{1}{V} \frac{\partial}{\partial T} \int_0^{\omega_D} D(\omega) \frac{\hbar \omega}{e^{\hbar \omega/k_B T} - 1} d\omega \]

Define Debye temperature \(\theta \) in terms of cut-off frequency

\[\chi_D = \frac{\hbar \omega_D}{k_B T} \equiv \frac{\theta}{T} \]

\[\theta = \frac{\hbar v}{k_B} \left(\frac{6\pi^2 N}{V} \right)^{\frac{1}{3}} \]
Debye temperature

\[\theta = \frac{\hbar \nu}{k_B} \left(\frac{6\pi^2 N}{L^3} \right)^{\frac{1}{3}} \]

Compare boundary conditions:

Brillion Zone (atom spacing)

\[K \leq \frac{\pi}{a} \]

Cut off frequency (atom packing)

\[K \leq K_D = \left(\frac{6\pi^2 N}{V} \right)^{\frac{1}{3}} \]

For ideal simple cubic specimen

\[\frac{\sqrt[3]{N}}{L} = \frac{n}{L} = \frac{1}{a} \quad K_D = \frac{(6\pi^2)^{\frac{1}{3}}}{a} \]

\(K_D \) are different with different kinds of lattice packing
Debye temperature

What are the factors that determine Debye temperature?

Theoretical:
\[\theta = \frac{\hbar v}{k_B} \left(\frac{6\pi^2 N}{V} \right)^{\frac{1}{3}} \]

\(v(\rho,K,G) \): sound velocity in the specimen
\(N/V \): atom concentration (packing density)

Experimental:
The Debye temperature were determined by fitting the observed specific heats \(C_V \) formula at the point of \(\frac{1}{2} \) Dulong-Petit value \((3Nk_B/2) \)

\[C_V = \frac{1}{V} 9nk_B \left(\frac{T}{\theta} \right)^3 \int_0^{\theta/T} \frac{x^4 e^x dx}{(e^x - 1)^2} \]
Debye temperature

\[\theta \propto v \times \left(\frac{N}{V} \right)^{\frac{1}{3}} \]

<table>
<thead>
<tr>
<th>Element</th>
<th>Li</th>
<th>Na</th>
<th>K</th>
<th>Rb</th>
<th>Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal structure</td>
<td>Bcc</td>
<td>Bcc</td>
<td>Bcc</td>
<td>Bcc</td>
<td>Bcc</td>
</tr>
<tr>
<td>Concentration 10^{22}/cm3</td>
<td>4.7</td>
<td>2.652</td>
<td>1.402</td>
<td>1.148</td>
<td>0.905</td>
</tr>
<tr>
<td>Sound speed m/s</td>
<td>6000</td>
<td>3200</td>
<td>2000</td>
<td>1300</td>
<td>~</td>
</tr>
<tr>
<td>Debye temperature</td>
<td>344</td>
<td>158</td>
<td>91</td>
<td>56</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>334</td>
<td>151.6</td>
<td>76.6</td>
<td>46.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Be</th>
<th>Mg</th>
<th>Ca</th>
<th>Sr</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal structure</td>
<td>Hcp</td>
<td>Hcp</td>
<td>Fcc</td>
<td>Fcc</td>
<td>Bcc</td>
</tr>
<tr>
<td>Concentration 10^{22}/cm3</td>
<td>12.1</td>
<td>4.3</td>
<td>2.3</td>
<td>1.78</td>
<td>1.6</td>
</tr>
<tr>
<td>Sound speed m/s</td>
<td>12870</td>
<td>4640</td>
<td>3810</td>
<td>~</td>
<td>1620</td>
</tr>
<tr>
<td>Debye temperature</td>
<td>1440</td>
<td>400</td>
<td>230</td>
<td>147</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>1011.3</td>
<td>258.3</td>
<td>172.1</td>
<td>64.9</td>
<td></td>
</tr>
</tbody>
</table>
Future work

• Intermediate region
• High temperature region
• Electron Effect
Thanks for your attention