

Thermoelectrics

廖建能 教授 國立清華大學材料科學工程學系

August 4, 2010

- Introduction of Thermoelectrics
- Researches on Thermoelectrics
- Example: nanocrystalline Bi-Sb-Te thin film
- Fundamental knowledge/training

Thermoelectric applications

Materials Science and Engineering National Tsing Hua University

COP and power generation efficiency \propto (1+ZT)^{1/2}

Classical thermoelectric materials

Superlattice structure

Bi₂Te₃/Sb₂Te₃ superlattice

 $\begin{array}{c} \text{Bi}_2\text{Te}_3\\ \text{Sb}_2\text{Te}_3\\ \text{Bi}_2\text{Te}_3\\ \text{Sb}_2\text{Te}_3\\ \text{Bi}_2\text{Te}_3\\ \text{Sb}_2\text{Te}_3\\ \text{Sb}_2\text{Te}_3\\ \end{array}$

Bi₂Te₃

Table 1 Theoretical and experimental lattice thermal conductivities

Material	Thermal conductivity (W m ⁻¹ K ⁻¹)
K _{min} of Bi ₂ Te ₃ (a-b axis), Slack model ³⁴	0.55
Kmin of Bi2Te3 (c axis), Slack model ³⁴	0.28
K _{min} of Bi ₂ Te ₃ (a-b axis), Cahill model ³⁵	0.28
Kmin of Bi2Te3 (c axis), Cahill model ³⁵	0.14
KL of Bi2-xSbxTe3 alloy (a-b axis)	0.97
$K_{\rm L}$ of $Bi_{2-x}Sb_{\rm x}Te_3$ alloy (c axis)	0.49
$K_{\rm L}$ of Bi ₂ Te ₃ /Sb ₂ Te ₃ superlattice (<i>c</i> axis)	0.22

Lattice thermal conductivity (K_L) of the Bi₂Te₃/Sb₂Te₃ superlattice (period ~50 Å) compared with K_L observed in the respective alloys and the theoretical minimum lattice thermal conductivity (K_{min}) from various models.

Rama Venkatasubramanian et al. Nature, 413, 11(2001)

GaAs Substrate з p-TeAgGeSb (ref.10) CeFe_{3.5}Co_{0.5}Sb₁₂ (ref.10) 2.5 Bi2-xSb,Te3 (ref.11) CsBi₄Te₆ (ref.11) 2 A Bi-Sb (ref.5) Bi₂Te₃/Sb₂Te₃ SL (this work) ₩ 1.5 0.5 400 1.000 200 600 800 Temperature (K)

Fine-tuning the phonon & carrier transport

Phonon-blocking/electron-transmitting

ZT=2.4 at 300K

7

Seebeck enhancement by band[§] structure engineering

J. P. Heremans et al, Science, 321, 554 (2008)

Nanocrystalline Bi-Te based thin films

N-type flash-evaportaed Bi-Se-Te films

T _{Anneal} (⁰ C)	Grain size (nm)	к (W/mK)
as-dep	~10	0.61
150	~27	0.68
250	~60	0.8

T _{Deposition} (⁰ C)	Grain size (nm)	κ (W/mK)	
R.T.	~25	0.46±0.08	
50	~45	0.65±0.08	
100	~85	0.81±0.06	

P-type sputtered Bi-Sb-Te films

(b)

Takashiri et al, J. Appl. Phys., 104, 084302 (2008)

Liao et al, J. Appl. Phys., 104, 104312 (2008)

Grain size

Nanostructured Bi-Sb-Te compounds

Nano-sized powder

Hot-pressed

assembled

A

Poudel el al, Science 320, 634 (2008)

Melt-spinning + SPS technique

Spark plasma sintering technique

Fig. 1. Overview of the graphite set-up containing a powder sample (black), horizontal graphite papers (blue) and a vertical graphite paper sleeve (red) and a set-up during heating.

Prospectus of material scientists

Structure/Microstructure

- Crystal structure
- Polycrystal vs single crystal (grain size)
- Crystal defects (antisite, vacancy, interstitial, dislocation)
- Precipitation
- Processing methods
 - Bulk vs thin film
 - Pre-treatment (purification, milling, doping,...)
 - Processing (deposition, cold/hot pressing, sintering, ...)
 - Post treatments (thermal, electrical, ...)
- Properties
 - Electrical transport (resistivity, carrier concentration, mobility)
 - Thermal transport (electronic/lattice thermal conductivity)
 - Electro-thermal transport (Seebeck coefficient)
 - Mechanical (strength, brittleness, CTE, ...)

National Tsing Hua University

- Understanding the structure-processing-property relationship
 - Directions of new material development
 - Model and mechanism?

Materials Science and Engineering

- Enhanced properties for better performance of existing applications or new applications
 - Experimental and theoretical verification
 - Prototyping applications and feasibility testing
- Confirming known facts is a training procedure not a research goal!

Electronic characteristics of defects in Bi-Sb-Te compounds

- Anti-site defects:
 - Bi_{Te} or Sb_{Te}: single acceptor
 - Te_{Bi} or Te_{Sb}: single donor
- Vacancies:

National Tsing Hua University

- V_{Bi} or V_{Sb}: triple acceptor
- V_{Te}: double donor
- Non-active interstitials

Electric current assisted annealing

Modified quartz holder

Experiment

Si Substrate

Polyimide (2 μ m) Film (~ **0.5** μ **m)**

Base pressure below 2*10⁻⁶ torr P-type: Bi-Sb-Te target N-type: Bi-Se-Te target

Step1: Thin films deposition by sputtering

S, ρ , n and μ measurement

SEM, AES, TEM...analysis

ULVAC MILA-3000

MATSUSADA AU-2P150

Annealing time: 5 min

Annealing temp.: 230~330 °C

Electric current density ~10³ Amp/cm²

Step 2: Heat treatment by ULVAC MILA-3000 equipped with a high voltage power supply

Seebeck coefficient measurement

R.T.- 200 °C sample stage and chamber under development

HMS-3000 Hall Measurement System

HMS-5000 Variable Temperature Hall Effect Measurement System (80K -350K)

Magnetic field 0.55Tesla

Sample holder

3ωThermal conductivity measurement

Sample process flow

Total thermal resistance versus film thickness

o et al, J. Appl. Phys., 104, 104312 (2008)

Electrical transport properties of p-type films (Bi:Sb:Te = 11:29:60)

Seebeck coefficient vs. carrier conc.

/Di Ch Ta filma)

Thermal conductivity vs. annealing temperature (Bi-Sb-Te films)

Morphology and elemental analysis of the Bi-Sb-Te films

Compositional analysis of electrically stressed Bi-Sb-Te thin film by TEM

Electromigration-induced Sb precipitation

Sb atoms have a very high effective charge for EM (~140) H. M. Gilder and D. Lazarus, Phys. Rev. 145, 507 (1966)

EM-induced Sb precipitation preferentially nucleate at G.B. at high T

Sb precipitation on electrical properties of the Bi-Sb-Te films

 \succ EM-induced Sb precipitation preferentially nucleate at G.B. Lower anti-site defects (Sb_{Te}) \rightarrow Carrier concentration decrease Lattice defects elimination \rightarrow Carrier mobility increase

Overall composition

Electrical transport properties of Bi-Sb-Te/Sb films

Bi:Sb:Te = 10.1 : 28.8 : 61.1 for BiSbTe film

Bi:Sb:Te = 9.6 : 33.2 : 57.2 for BiSbTe/Sb10s film

Bi-Sb-Te/Sb film electrically stressed 330 °C for 5 min

	BiSbTe	BiSbTe/Sb10s	BiSbTe/Sb20s
S (µV/K)	217 ± 4	188 ± 2	175 ± 2
ρ(mΩcm)	4.9 ± 0.1	2.6 ± 0.1	2.5 ± 0.1
μ(cm²Vs)	84 ± 2	89 ± 2	75 ± 2
p (*10 ¹⁹ cm ⁻³)	1.5 ± 0.1	2.7 ± 0.1	3.4 ± 0.1
S²/p(mW/K²m)	0.96 ± 0.05	1.36 ± 0.08	1.23 ± 0.08

Microstructure & electrical transport properties of BiSbTe/Sb20s film:

- More Sb precipitates in the film
- Carrier concentration 1, but mobility
- Worse thermoelectric properties than BiSbTe/Sb10s film

Fundamental knowledge/training

Fundamental knowledge:

 Solid-state physics: Energy bands in crystals, Electrons in crystals, Semiconductor physics, Classical electron theory, Boltzmann transport theory, Phonons, Electrical/thermal transport properties,...

Equipment training:

 Power supply/multimeter operation, 4-point probe electrical measurement, Van der Pauw measurement, Hall effect measurement, Seebeck coefficient measurement, 3ω thermal conductivity measurement, Laser flash thermal conductivity measurement, Hall effect measurement, Sputter, ...

Lab skills:

- SEM, XRD, Origin, LabView, Image processing, ...
- Design what you need!!!

Potential research topics

- Effect of Sb-rich precipitates on transport properties
- Electrical contact resistivity of Metal/Bi-Te
- Thermal contact resistance of Metal/Bi-Te and Dielectric/Bi-Te
- Long-range electromigration in Bi-Te based compound
- Grain size effect on transport properties