

熱電能源管理實驗室 Thermo-Electric Energy Management (TEEM) Laboratory

Electromigration

廖建能 教授 國立清華大學材料科學工程學系

August 5, 2010

- Interconnect reliability
- Researches on Electromigration
- Example: Nanotwinned Cu
- Fundamental knowledge/training

What is electromigration (EM)?

Interconnects in IC chips

Al(Cu) Interconnects 0.5 μm line width/space →100 m/cm² in a single layer →1 km of interconnect per chip IBM J. of Res. & Develop., July 1995

Cu interconnects

IBM's 90 nm technology with Cu/low-k 0.12 µm line width/space 4

EM-induced failures – Cu interconnects

Materials Science and Engineering National Tsing Hua University

Three-level dual damascene Cu interconnects stressed at 295 °C at 2.5x10⁶ A/cm² for 1000 h

C. K. Hu et al, APL, 78, 904 (2001).

EM-induced failures – flip chip solder bump

40

50

A sketch of the diffusion of the shaded AI atom to a neighboring vacancy. The pair has four nearest neighbors in common, including the two drawn in broken curves. (a) before diffusion and (b) halfway during diffusion

Electromigration = Thermal diffusion + Electrical force

EM driving force

 Electromigration: a combination of thermal and electrical effects on mass transport.

$$J = -D \frac{\partial C}{\partial x} + C \frac{D}{kT} F_{em} \quad D = D_0 e^{-\frac{\Delta H_m}{kT}}$$

pure metal

• The EM driving force of the net atomic flux :

$$F_{em} = Z^* e\varepsilon = (Z_{el}^* + Z_{wd}^*) e\varepsilon$$

Electrostatic force due to the electric field acting on diffusing ions

Electron wind force due to the electronatom momentum exchange effect

Blech effect

- The Blech effect says that below a certain critical length, L_c, no EM damage formation will arise.
- Similarly, for a given interconnect of length L, the resistance change due to EM damage will cease below a certain current density, j_c.

Electromigration paths

Temperature-dependent EM mechanisms

TABLE I. Melting point and diffusivities of Cu, Al, and eutectic SnPb.

	Melting point (K)	Temperature ratio 373 K/T m	Diffusivities at 100 °C (cm ² /s)	Diffusivities at 350 °C (cm²/s)
Cu	1356	0.275	Lattice $D_l = 7 \times 10^{-28}$	$D_l = 5 \times 10^{-17}$
			Grain boundary $D_{gb} = 3 \times 10^{-15}$ Surface $D_s = 10^{-12}$	$D_{gb} = 1.2 \times 10^{-9}$ $D_s = 10^{-8}$
A1	933	0.4	Lattice $D_l = 1.5 \times 10^{-19}$	$D_l = 10^{-11}$
			Grain boundary $D_{\rm gb} = 6 \times 10^{-11}$	$D_{\rm gb} = 5 \times 10^{-7}$
Eutectic SnPb	456	0.82	Lattice $D_l = 2 \times 10^{-9} - 2 \times 10^{-10}$	Molten state $D_l > 10^{-5}$

K. N. Tu, JAP, 94, 5451 (2003)

Grain-size dependent EM for Al(Cu) interconnects

M. Gall, Ph.D. Thesis, UT Austin, 1999

C. K. Hu et al., Mat. Chem. Phys. 52, 5, 1998; R. Rosenberg et al. "Copper Metallization for High Performance Silicon Technology", Ann. Rev. Mat. Science V.30, pp.229-262, 2000.

EM paths for Cu interconnects

- Major EM path: Cu/dielectric interfaces
- Solutions:
 - Surface treatment prior to dielectric dep.
 - Metal capping
 - Alloying

C. K. Hu et al, Thin Solid Films, 504, 274 (2006).

 $E_a = 0.9 \sim 1 \text{ eV}$ $E_a = 1.4 \text{ eV}$

E_a=2 eV

EM of Cu(Sn) interconnects

Film	Resistivity (μΩ-cm) at 20ºC	
Sputtered Cu	2.1	
AI (2 wt% Cu)	3.2	
Cu (0.5 wt% Sn)	2.4	
Cu (1 wt% Sn)	2.9	
W	5.3	

Resistivity Activation energy for EM Cu < Cu-0.5Sn < Cu-1Sn < Al(Cu)Cu < Cu-0.5Sn < Cu-1Sn < Cu-2Sn

National Tsing Hua University

- Understanding the structure-processing-property relationship
 - Directions of new material development
 - Model and mechanism?

Materials Science and Engineering

- Enhanced properties for better performance of existing applications or new applications
 - Experimental and theoretical verification
 - Prototyping applications and feasibility testing
- Confirming known facts is a training procedure not a research goal!

For Al interconnects, we add tiny amount of Cu and Si into the Al metallization.

For Cu interconnects, what can we add?

Nanotwinns

В

Twin-structured Cu metallization

L. Lu, Science, 304, 422 (2004).

Experimental setup

UHV-TEM (JEM 2000V)

Materials Science and Engineering National Tsing Hua University

K. C. Chen et al, *Science*, **321**, 1066 (2008)

Effect of twin boundary on EM

K. C. Chen et al, *Science*, **321**, 1066 (2008)

Materials Science and Engineering National Tsing Hua University

Moving speed of the atomic steps at twin-modified boundary

Twin boundaries >>>> time lag of ~ 5 seconds

K. C. Chen et al, Science, 321, 1066 (2008)

EM-induced atomic step movement

Incubation time for nucleating a new step on the (111) or (422) plane

Fundamental knowledge/training

Fundamental knowledge:

 Semiconductor processing technology, Micro Electro-Mechanical Systems, Kinetics of Materials, Diffusion in Solids, Phase transformation, ...

Equipment training:

- Sputter, E-beam, Electrochemical deposition, Reactive ionic etching, Photo lithography patterning, Sputter, Rapid thermal annealing, 4-point probe, Electrical stressing/measurement, Photomask design, ...
- Lab skills:
 - TEM, SEM, XRD, Origin, LabView, Image processing, ...
 - Design what you need!!!

- EM-induced grain growth (GB migration)
- EM-induced TB migration

National Tsing Hua University

- EM characteristics of nanotwinned Cu lines
- Cu/CNT composite

Materials Science and Engineering

- Cu nanowire
- Oxidation behavior of nanotwinned Cu
- Existence of EM-induced back stress