Subgroup meeting 2010.12.07 introduction of thermal transport

members: 王虹之.盧孟珮

Outline

- Dispersion relation (review)
- Sepcific heat (review)
- Different temperature ranges
- Low temperature range
- Debye temperature

ω axis

Electromagnetic wave

- ω/k=c
- c:light speed
- c is constant \rightarrow linear dispersion relation
- At lower energy (lower k)
- Ka << π (near zero)
- The dispersion relation is regard as linear

ω axis Opti

Standing wave $k = \pi/a$ 2a= λ (k is fixed, ω is independent from k)

Energy does not propagate in the medium (standing wave)

 Classical mechanism : Harmonic oscillator (conservative force and wave)

• We get dipersion relation by only classical assumption

There are three segments of the experiment curve of specific heat (Cv).

Specific heat

s: types of phonons k: wave factor

General form of specific heat

Frequencies are functions of wave factor

$$C_{v} = \frac{\partial}{\partial T} \frac{1}{V} \sum_{s} \int \underbrace{\frac{\hbar \omega_{s}(k)}{e^{\hbar \omega_{s}(k)/k_{B}T} - 1} \frac{4\pi k^{2}L^{3}}{(2\pi)^{3}} dk}_{s}$$

Quatum theory of Harmonic solid

- Bose-Einstein distribution function
- Stationary states of vibration

Different approximationa of temperature ranges:

- Low temperature: Debye model
- Intermediate temperature: Debye & Einstein
- High temperature: \rightarrow Dulong-Petit

Low temperature

Debye model approximation

Debye model

•The angular frequencies are diverse values.

•The maximum allowed value is cut-off frequency ω_D

Debye model

Specific heat

ħω

 $\overline{k_B T}$

X =

$$C_{v} = \frac{1}{V} \frac{\partial}{\partial T} \int_{0}^{\omega_{D}} D(\omega) \frac{\hbar \omega}{e^{\hbar \omega/k_{B}T} - 1} d\omega$$

$$\downarrow$$

$$C_{v} = \frac{1}{V} 9nk_{B} \left(\frac{T}{\theta}\right)^{3} \int_{0}^{\theta/T} \frac{x^{4}e^{x}dx}{(e^{x} - 1)^{2}}$$

✓ Energy per phonon

✓ Bose-Einstein
 distribution

✓ Cut-off frequency

$$U = 9nk_{B}T\left(\frac{T}{\theta}\right)^{3}\int_{0}^{x_{D}}\frac{x^{3}dx}{e^{x}-1}$$

Debye model

The difference between constant ω surface is $\Delta \omega$

Density of states $D(\omega)$

 $D(\omega) = \frac{V}{(2\pi)^3} \int^{\text{shell}} \frac{dS_{\omega}}{V_{\sigma}}$

The spacing between constant frequency surface depends on (group velocity) dω/dk

For simple case that v_p=v_g ω/k=constant=sound velocity

We can get approximation $D(\omega)$ of Debye model (low temperature)

$$D(\omega) = \frac{V\omega^2}{2\pi^2 v^3}$$

Dispersion relation

- Ignored optical branches
- •Replace acoustic branch with liner branches

$$C_{v} = \frac{\partial}{\partial T} \frac{1}{V} \sum_{s} \int \frac{\hbar \omega_{s}(k)}{e^{\hbar \omega_{s}(k)/k_{B}T} - 1} \frac{4\pi k^{2} L^{3}}{(2\pi)^{3}} dk$$

When T is small

High frequencies result in large $e^{\hbar\omega/k_BT}$

The contributions of high frequencies for **LOW** temperature are negligible.

At very low temperature Specific heat

$$L_v \cong \frac{2\pi^2}{5} \frac{k_B^4 (T)^3}{(\hbar c_{ave})^3}$$

Which is **Debye** T^3 law

Condition assumption:

- Only Acoustic modes are thermally excited
- For actual crystals Temperature may necessary to be below $T=\theta/50$

θ :Debye temperature

$$C_{v} \simeq \frac{12\pi^{4}}{5} Nk_{B} \left(\frac{T}{\theta}\right)^{3}$$

Determine a cut-off frequency of specimen

Define Debye temperature θ in terms of cut-off frequency

$$x_{\rm D} = \frac{\hbar\omega_{\rm D}}{k_{\rm B}T} \equiv \frac{\theta}{T} \qquad \qquad \theta = \frac{\hbar v}{k_{\rm B}} (\frac{6\pi^2 N}{V})^{\frac{1}{3}}$$

$$\theta = \frac{\hbar v}{k_{\rm B}} (\frac{6\pi^2 N}{L^3})^{\frac{1}{3}}$$

L: length of specimen

N: number of ions in specimen (total vibration modes)

Compare boundary conditions:

Brillion Zone (atom spacing) $K \le \frac{\pi}{2}$

Cut off frequency (atom packing)

$$\mathbf{K} \le \mathbf{K}_{\mathrm{D}} = \left(\frac{6\pi^2 \mathbf{N}}{\mathbf{V}}\right)^{\frac{1}{3}}$$

For ideal simple cubic specimen

$$\frac{\sqrt[3]{N}}{L} = \frac{n}{L} = \frac{1}{a} \qquad K_{D} = \frac{(6\pi^{2})^{\frac{1}{3}}}{a}$$

KD are different with different kinds of lattice packing

What are the factors that determine Debye temperature?

Theoretical :
$$\theta = \frac{\hbar V}{k_B} \left(\frac{6\pi^2 N}{V}\right)^{\frac{1}{3}}$$

v(ρ,K,G): sound velocity in the specimen N/V: atom concentration (packing density)

Experimental:

The Debye temperature were determined by fitting the observed specific heats Cv formula at the point of ½ Dulong-Petit value (3Nk_B/2) $C_v = \frac{1}{V} 9nk_B \left(\frac{T}{\theta}\right)^3 \int_0^{\theta/T} \frac{x^4 e^x dx}{(e^x - 1)^2}$

Element	Li	Na	К	Rb	Cs
Crystal structure	Всс	Всс	Всс	Всс	Bcc
Concentration 10^22 /cm^3	4.7	2.652	1.402	1.148	0.905
Sound speed m/s	6000	3200	2000	1300	~
Debye temperature	344	158	91	56	38
	334	151.6	76.6	46.6	
Element	Ве	Mg	Са	Sr	Ва
Crystal structure	Нср	Нср	Fcc	Fcc	Всс
Concentration 10^22 /cm^3	12.1	4.3	2.3	1.78	1.6
Sound speed m/s	12870	4640	3810	~	1620
Debye temperature	1440	400	230	147	110
	1011.3	258.3	172.1		64.9

Future work

- Intermediate region
- High temperature region

• Electron Effect

Thanks for your attention