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introduction of thermal transport
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introduction of
thermal transport

Phonon effect Electron effect
] ]
Lattice vibration phonon
Debye model of ~'~ K space, Scattering g Dispersion Optical and
lattice vibration . Reciprocal lattice mechanism .‘ relation Acoustic phonons
= 7 i
bt T +
Bose-Einstein | Dulong-petit L Boundary Phonon-phonon
Brillouin zone . .
model model ‘ scattering scattering

The contribution

Heat capacity of electron of Normal Process |
II heat capacity

Debye

temperature Umklapp process




Outline

Dispersion relation (review)
Sepcific heat (review)
Different temperature ranges
_ow temperature range

Debye temperature



Dlsparsmn relatlon

w axis

Optical branch

=

Acoustic
branch

n/a K axis

Electromagnetic wave
e w/k=c

e c:light speed

* c is constant =2 linear

dispersion relation

e At lower energy (lower k)
Ka<<m (near zero)

* The dispersion relation is
regard as linear



Disparsion relation
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Optical branch
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We get linear part of dispersion relation.

Acoustic
branch

n/a K axi
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Disparsion relation

w axis

Optical branch

|

Acoustic
branch

V)

n/a K axi

Standing wave
k=1/a 2a=A
(k 1s fixed, w Is independent from k)

RIODOXXK

Group velocity Vg = d_m

dk
vg=0 atk=1/a

Energy does not propagate in
the medium (standing wave)
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Disparsion relation

e Classical mechanism :
Harmonic oscillator
(conservative force and wave)

* We get dipersion relation by only
classical assumption



ecific heat

A

Intermediate

\ 7

B

High temperature
)'\ j\ / . -

There are three segments of the experiment
curve of specific heat (Cv).



Specific heat

s: types of phonons
k: wave factor

General form of specific heat  Frequencies are functions
of wave factor

ho (k)  4mkL3 e
Cv OTVZJems(R)/kBT — 1] (2m)3

Quatum theory of Harmonic solid
* Bose-Einstein distribution function
e Stationary states of vibration




[—— |
m
A — —

4 \/

Low temperature

S

Intermediate

v,

/ High temperature

N /\

—

Different approximationa of temperature ranges:
* Low temperature: Debye model

* |Intermediate temperature: Debye & Einstein

* High temperature: 2 Dulong-Petit




“Specific heat

at Low temperature

A

)

Debye model approximation

[Low temperature J

>

Debye model

*The angular frequencies are
diverse values.

*The maximum allowed value Is
cut-off frequency wo



“Debye model

Specific heat

v'Density of states

v'Energy per phonon

v'Bose-Einstein
distribution

v'Cut-off frequency
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4 D(w) D(w)do = (%) l

AL

dw/dk1 > dw/dkz

Akzl

The difference between
constant w surface is Aw

V shell dS
D(w) = f —

(2m)3 Vg

The spacing between constant
frequency surface depends on
(group velocity) dw/dk

For simple case that vp=vg
w/k=constant=sound velocity

We can get approximation D(w) of
Debye model (low temperature)

Vw?

2Tévs

D(w) =



pecific heat at Low temperatt

Replacing by approximation

- n/a 0 n/a K axis A

Dispersion relation

*lgnored optical branches
*Replace acoustic branch with liner branches



“Specific heat at Lo
hog(k) — 4mk2L3
Cu aTVZ f Fos®/ksT — 1 (2m)F O

When T is small

Optical : : :
A High frequencies result in

ranch
large
StiC eﬁ.(ﬂ/kBT

w axis

The contributions of high
/3 0 . n/a Kaxis frequencies for LOW
W= —— temperature are negligible.




ecific heat at Low
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/‘ecific heat at Low !e'ﬂrpe.ra_t

At very low temperature ; 4‘\' :

Specific heat EZH Kp(T)

N "= (hewey
Which is Debye T3 law

Condition assumption:
* Only Acoustic modes are thermally excited

* For actual crystals Temperature may necessary
to be below T=6/50

121t 3

T
Cv=—5—Nkg (6)

0 :Debye temperature



“Debye temperature

Determine a cut-off frequency of specimen

CLV4nk® v .
_(Zn) R )
2N\ 3
wp = 6m*Vv>N/V Kp = (61:/ N)
10 ho
vVt (0) FogT 7 4@

Define Debye temperature 0 in terms of cut-off frequency

« :hmD:E e_hv 61‘[2N%
D kgT ~ T _kB( v




L: length of specimen
2N 1
9 . hV 6T[ N 3 N: number of ions in
o k ( L3 specimen (total
B vibration modes)

Compare boundary conditions:

i
Brillion Zone (atom spacing) K < 2
1
Cut off frequency 612N\ 3
(atom packing) K<Kp = v
For ideal simple cubic specimen
1
VN n 1 (6m%)3

L L d D™ a

Ko are different with different kinds of lattice packing




Debye temperature

What are the factors that determine Debye
temperature?

Av 64N 1
:k( V )3 .
B

v(p,K,G): sound velocity in the specimen
N/V: atom concentration (packing density)

Theoretical: 9

Experimental:
The Debye temperature were determined by fitting
the observed specific heats Cv formula at the point of

% Dulong-Petit value (3Nks/2) 3 4 x
. _ 19 L T O/T x*eXdx
vy nB(ﬁ)L (ex —1)2




N 1

Debye temperature S
Element Li Na K Rb Cs
Crystal structure Bcc Bcc Bcc Bcc Bcc
Concentration 10°22 [4.7 2.652 1.402 1.148 |0.905
/cm”3
Sound speed m/s 6000 3200 2000 1300 ~
Debye temperature 344 158 91 56 38

151.6 76.6 46.6

Element Be Mg Ca Sr Ba
Crystal structure Hcp Hcp Fcc Fcc Bcc
Concentration 10022 [12.1 4.3 2.3 1.78 1.6
/cm”/3
Sound speed m/s 12870 |4640 3810 ~ 1620
Debye temperature 1440 400 230 147 110

1011.3 |258.3 172.1 64.9




Future work

* Intermediate region
* High temperature region

 Electron Effect




Thanks for your attention
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