Subgroup meeting－09／07 Introduction of thermal transport

Members：盧孟珮楊祥宏
王虹之

OUYTLNE

- 2010.08.24
- brief introduction of thermal conductivity
- Phonons
- Debye model
- 2010.09.07
- Questions
- K-space and reciprocal space
- Brillouin zone

OUtLne 2010.09.07

- review questions
- K-space
- Reciprocal lattice
- Brillouin zone
- Future work

Review questions

－How do atoms oscillate？Hooke＇s law

壓縮 $|U|=\max K=0$

平衡位置 $\mathrm{U}=0 \mathrm{~K}=\mathrm{max}$

伸長 $|U|=\max K=0$

$$
\mathrm{U}=-\int \mathrm{kxdx}=\frac{1}{2} \mathrm{kx}^{2}
$$

Review questions

- Why the energy of phonon is not continuous?

Energy levels

 Oscillator Particle in a boxWave in a box

Review questions

- Why we can ignore electron effect at specific heat of solid ?
- Electron \rightarrow fermions obey the exclusion principle

- we should consider the contribution of electrons at very low temperature

K-space

Blue point

$$
\mathrm{K}=0, \pm \frac{2 \pi}{\mathrm{~L}}, \pm \frac{4 \pi}{\mathrm{~L}}, \ldots \ldots+\frac{2 \mathrm{n} \pi}{\mathrm{~L}}
$$

Red circle

- $\because \quad \mathrm{K}=\left|\frac{2 \pi}{\lambda}\right|=\left|\frac{\pi}{n a}\right|$

Reciprocal lattice

-Definition

$$
\begin{aligned}
& \mathrm{b}_{1}=2 \pi \frac{a_{2} \times a_{3}}{a_{1} \cdot a_{2} \times a_{3}}, b_{2}=2 \pi \frac{a_{3} \times a_{1}}{a_{1} \cdot a_{2} \times a_{3}}, b_{3}=2 \pi \frac{a_{1} \times a_{2}}{a_{1} \cdot a_{2} \times a_{3}} \\
& \text {-Unit } \\
& \text { Lattice: length }
\end{aligned}
$$

Reciprocal lattice: 1/length

Reciprocal lattice

- Reciprocal vector

$$
\begin{equation*}
\mathrm{G}=\mathrm{v}_{1} \mathrm{~b}_{1}+\mathrm{v}_{2} \mathrm{~b}_{2}+\mathrm{v}_{3} \mathrm{~b}_{3} \tag{G2}
\end{equation*}
$$

Reciprocal lattice

- points in reciprocal space can be corresponded with collective vectors pointing from the origin $\rightarrow \mathrm{G}$
- Common lattices comparison

lattice	Reciprocal lattice	Description
SC	SC	Lattice constant a
BCC	FCC	Reciprocal lattice constant $2 \pi / a$
FCC	BCC	

Fourier space

- The unit of the coordinate is ($1 /$ length)
- Fourier transform
- points in Fourier space can describe the character of waves
\rightarrow wave constant K
- Reciprocal lattice points are the correspondence of lattice points in Fourier space
\rightarrow reciprocal lattice vector \mathbf{G}

Brillouin zone

- The Wigner-Seitz cell in reciprocal space
- K can only be valid in First Brillouin zone for elastic wave
- First Brillouin zone
$-п / a<K<\pi / a$

Brillouin zone

- How to get Brillouin zone?

Brillouin zone

FUTURE WORE

- 1.The mean free path of phonon
- 2.Thermal conductivity, density, heat capacity and mean free path
- 3.The scale of phonon engineering
- 4.Debye temperature of different material
- The transport of phonons
- The thermal effect of electrons

Thanks for your attention

