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Introduction
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- Electronic charge carriers and Phonons.

Ktotal= Ke + KL

(x is thermal conductivity)



Phonons

- Quasiparticle

quantization of the modes of lattice vibrations of
periodic ,elastic crystal structure of solid.

- Lattice waves(lattice vibration)
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Moreover..

Specific heat of solids
- c=Q/marT

* For fixed volume: c¢_ = (%].,w

- Three models

» Dulong-Petit model
» Bose-Einstein model
» Debye model



Three models

ct
< S SO
o pp— -
calimolk ° ~
4 -
3 -
2 -
1 -
_ " T(k)
— =By Lowtemp High temp
""" Law of Dulong —Petit, based on Maxwell-Boltzmann distribution

— Bose-Einsteinmodel



Q: why specific heat of solid behaves
differently at low and high temp?
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A:Quantum effect emerges at low temp, and this effect
IS disturbed by thermal energy at high temp.



Dulong and Petit

- Maxwell-Boltzman distribution function

three dimension, E = 3kgT
C, = OE/OT = 0Q/0T
C, = 3kg

specific heat of solid must be calculated in
different ways at low and high temps
respectivel



Bose-Einstein model

- Assumption

* Three dimension harmonic oscillator
* Vibrate independently
- same frequency



Deviation

- Fail to valid in low temp
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(Bose-Einstein model)

" T(k)

o : only one atomic vibration frequency

(o)

° : no interaction between individual

phonons.



Debye model

- Assumption

- Similar to black body

- Vibrate as elastic standing waves
(differ from Bose-Einstein model)

» Frequency 0~v

frequency (Einstein model) Frequency distribution
(Debye model)
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Debye model

- atomic vibrations as phonons in a box
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» Bose-Einstein statistics
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Debye model

- The energy in solid

U= E,N(E,)

hoyg, o
= z J. — ] Dp(w)dw D(w) = density of modes/states
—1



Debye model-
frequency distribution

1-D normal vibration mode
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Debye model-

frequency distribution

- sin(sKa),cos(sKa)

- boundary conditions
NKa = 2nm

« For K=0 - K=8m/8a -
sin(skKa) is meaningless

x(sa) = x(sa+ L)
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Debye model-
frequency distribution

periodic boundary condition
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Debye model-
frequency distribution

» The allowed K is (_]3

« The number of allowed states

?} 3 K-space




Debye model-
frequency distribution

- The approximation of Debye model
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D(w) = 23 w = vk

- Debye frequency
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Debye model

- The energy in solid

J’mn(vm )
IT=3X
o 2miy3 :-:p{ m]_l

k
- Debye temperature is defined as 6
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- The energy in solid (Debye model)
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Conclusion
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Lattice thermal transport:
(wave-particle duality description)

Classical mechanics: wave-like phenomena
Quantum mechanics: particle-like properties



Thanks for your attention!!

Qand A



